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Abstract

Conformal arrays are popular antennas for aircraft and missile

platforms due to their inherent low weight and drag properties. How-

ever, to date there has been a dearth of rigorous analytical or nu-

merical solutions to aid the designer. Ill fact, it has been common

practice to use limited measurements and planar approximations in

designing such non-planar antennas. In this report, we exteud the fi-

nite element-boundary integral method to scattering and radiation by

cavity-backed structures in an infinite,metallic cylinder. In particular,

we discuss the formulation specifics such as weight functions, dyadic

Green's function, implementation details and particular difficulties in-

herent to cylindrical structures. Special care is taken to ensure that

the resulting computer program has low memory demand and mini-

mal computational requirements. In this report, both scattering and

radiation parameters are computed and validated as much as possible.
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1 Introduction

('onformal antenna arravs are attractive for aircraft, spacecraft, and land ve-

hicle applications since these systems possess low weight, flexil)ility, and cost

advantages over conventional protruding antennas. The majority of previous

studies in non-planar conformal antennas has been conducted experimentally

due to a lack of rigorous analysis techniques. Some approximate analyses

have been considered but these are restricted in accuracy and element shape.

Recently. the finite element-boundary integral (FEM-BI) method was

successfully employed for the analysis of large cavity-backed planar arrays

ill. The resulting system is sparse due to the local nature of the finite ele-

ment method whereas the boundary integral sub-matrix is fully populated.

However, by resorting to an iterative solver such as the Biconjugate Gradi-

ent (BiCG) method, the boundary integral system may be cast in circulant

form allowing the use of the Fast Fourier Transform (FFT) in performing

the matrix-vector products. This BiCG-FFT solution scheme ensures O(N)

memory demand for the entire FEM-BI system and minimizes the computa-
tional requirements.

In this report we extend the FEM-BI formulation to aperture antennas

conformal to a cylindrical metallic surface. Both the radiation and scatter-

ing problems will be developed in the context of the FEM-BI method. In

contrast to the planar aperture array, the implementation of the cylindrically

conformal array requires shell-shaped elements rather than bricks, and the

required external Green's function must satisfy the boundary conditions on

the cylinder. In its exact form, this Green's function is an infinite series which

imposes unacceptable computational burden on the method. However, for

large radius cylinders, suitable asymptotic formula are available and herein

used for an efficient evaluation of the Green's function. In addition, the

resulting BI system is again cast in circulant form to ensure an CO(N) mem-

ory demand and take advantage of the FFT's speed when carrying out the

matrix-vector product.

At the end of this report, we also present computations of the relevant

antenna and scattering parameters validated with available known results.

One of the most interesting applications of the numerical laboratory devel-

oped in this project will be the ability to study curvature effects of real world

antenna systems in an exact manner. Such studies will be pursued in the

near future and the will be addressed in a future report.



2 FEM-BI for Circular Cylinders

Consider a cavity recessed in an infinite.metallic cylinder, shown in figure 1.

The cavity walls'are assumed to coincide with constant p-, o- and z-surfaces

and the cavity is assumed to be filled with inhonlogeneous material. Interior

sources and lumped loads may be present as well as surface metallization

patterns and resistive cards.
The FEM-BI technique [1] permits determination of the electric field

within the cavity which are induced by either interior or exterior sources. The

svstem of equations associated with the FEM formulation is sparse whereas

tiae boundary integral sub-matrix is usually fully populated. However, with

a judicious choice of boundary elements, the formulation will maintain O(N)

memory demand when coupled with a Biconjugate Gradient-Fast Fourier

Transform (BiCG-FFT) solver. Upon determination of the fields, the radi-

ated and scattered patterns are readily calculated from the aperture fields

while the input impedance, S-parameters and other pertinent antenna quan-

tities may be computed from the appropriate interior fields.

The FEM-BI system is developed directly from the inhomogeneous vector

wave equation and a complete presentation of the derivation is given by

Volakis et al. [2]. The resulting system is

f, ¢, z)

, }_k2oe_(p,¢,z)l,_j(p,¢,z). I,Vi(p, ep, z) pdpdOdz

_2(a,(_, 5) x _(a,¢',=')" _l/'i(a,¢',z')] de' dz'dCdz = f;" + f:_'
(1)

where Wi(P, _, z) are edge-based expansion functions where support is over

the volume V_ and _2(a, ¢, _') is the pertinent dyadic Green's function. The

free-space wavenumber is denoted by ko 2, the cylinder has radius a= >,'-_,

whereas e, and _ are the relative constitutive parameters of the material

filled cavity. Also V/ represents the i th integration volume which extends

over the support of _Vi(p, ¢, z) and in a similar fashion Si and Sj indicate

surface integration over all aperture elements which extend over the support

5



Figure 1: Illustration of the cavity geometry situated on a metallic cylinder

(a) Coordinate system (b) Typical cavity-backed antenna.



of the i 'h (test) and jth source basis functions, respectively. The function

#;,,(i)_=(j) is a product of two l,_ronecker functions and it simply indicates

that tile botmda,'v integral only contributes when both tile t_,st and source

unknowns are on the aperture. We remark that the dyadic Green's function

is convolutional (o = 0- o', 5 = z - z') and will be discussed later along

with the functionals fi,,t and f/_,,t which depend on the interior and exterior

excitations, respectively. Rather, we shall first proceed with a presentation

of the appropriate weight functions and the evaluation of the FEM matrix

entries which are represented by Aij in the FEM-BI matrix system

(2)

to be solved via the BiCG method.

2.1 Vector Weight Functions

Traditional node-based finite elements associate the degrees of freedom (E3)

with the nodal fields. These elements impose both tangential and normal

field continuity along inter-element boundaries even at material boundaries

[3]. These elements also do not correctly model the null space of the curl

operator and as a result spurious solutions are generated [3] which are typ-

icallv suppressed by imposing a penalty function [4]. Edge-based elements,

where the unknowns are associated with the free edges of the mesh, do not

enforce normal field continuity (although tangential continuity is still main-

tained) and are therefore more suitable for electromagnetics applications. In

addition, edge-based elements avoid explicit specification of the fields at ge-

ometry corners where the field may be singular [5]. Two popular volume

elements are the brick [5] and the tetrahedron [6, 7] which are readily mated

with rectangular and triangular surface elements, respectively. The brick is

well-suited for geometries delimited by constant x- , y- and z-planes in the

Cartesian system while the tetrahedra are more versatile (and consequently

more complex). For cavities residing in a circular cylinder it is advantageous

to employ the cylindrical shell element.

Cylindrical shell elements, which are defined by constant p-, ¢- and z-

surfaces, are superbly suited for cavities recessed in a circular cylinder since



they possessboth geometricalfidelity as well as simplicity. Tlwse shell ele-
nwnts areallalogousto the bricksusedby ,]in and Volakis [5]and belong in
tile generalclassof curvilinear brick elements. Figure 2 illustrates a typical
shell element which has eight nodesand twelve edges: four edgesaligned
along each of the three orthogonal directions of the cylindrical coordinate
system.The edge-basedweight functions for theseelementsmust satisfy the

following properties:

1. subdomain (finite element)

"2. II _]:;(p, o, _-) I1= 0 if (p, o, z) 6 any edge :_ j and II J'" edge

:]. V. ff'0(P, o. :) = 0_

Such expansion/weight functions can be represented as

IP,2(p, o, _) = IP_(p, o. :;., o_, z,, +), _P_(,,, o,-) = g"_(p, o, ::., o_, :,,-)
_7I_:_(p,o,--) = fi:'/p, 0,--;., 0_,--b,-), l,P_(p,o, :) = _ _(p,o, --;.,_,,-'b,+)

ff',(p,o._-) = I-f'_(p,o, :: p_,., --,,+ ), _P_(p,0,:)= _v,,(p,*, :; po,, -',, -)

I_(,,, _,,:) = IP_(,,,o. :; pb,., :b, -), _P_(p,*,-') = _P,(p,,_,:; ,,=,,--b, +)

ff',_(p,_,.:) = l_':(p,O,:;pb, O_,-,+), _'2_(P,¢,,:) = ffT=(p,_,:;po,_ .,_)

lP_,(p,o, --)= IP:(V,_,-;Pb, O,,',--), _P_(p, O,-) = _P_(p,C,,"-:P=,*,, ",+ )
(a)

where I'_k denote the edge which is defined by local nodes (1,k) as shown

in figure 2. That is three fundamental vector functions are required for the

complete representation of the edge-based cylindrical shell element. They

are given by

_P_(p,_,:;_,o, = a) = ap_(o-g)(=-_=)_
~' oh p

t _ (p, 0, z) will only satisfy this requirement within the volume of the element. These
weighting functions introduce artificial charges on the faces of the element and are not
divergenceless at element interfaces. This is required since these elements do not guarantee
normal field continuity across the element faces.

8



Figure 2: Cylindrical shell element.
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If;(p,o._-:f_,o.__._) - th(t,-f_)(_-_-)o

l-f':(p, o, :; [_,o, __,_) - t:(p-/,)(o-S).5 (4)

where t = p6 - p_, a = O, - oi, and h = .:t - Zb and the element parameters

(P,,,Pb, Ol, Or, "-,b,zt) are shown in figure 2. \Ve remark that the k term which
P

appears in the definition of the fi-directed weight is essential in satisfying the

divergenceless property of the edge-based expansions. Of course, for very

large radius cylinders and small elements, the curvature of these cylindrical

shell elements decreases resulting in weight vectors which are functionally

similar to the bricks used bv Jin and Volakis [5].

2.2 FEM Matrix

The inherent locality of a partial differential equation formulation such as

the FEM suggests that [A] is sparse. This FEM matrix results from the

discretization of the first two integrals of (1) and owing to the finite support

of the basis functions its entries are identically, zero unless both the test and

source edges are within an element. These matrix entries can be represented
as

- _oe,_,, (5)
,tZr

where we have assumed constant material properties within an element (e_

and p_) and the subscripts (i,j)refer to the row and column of the [A] matrix.

respectively. The two auxiliary functions are defined by

i(lIiS [ : ."' = Jt V x _,(p, ¢, z; hi, _j, z:, _) •

v × _,(e, _, :; h,, g,, =~,, a,)p dp de dz

iI2}O f; I_,(p,¢,z;/_ 3 $j, S3,_,) _-_'t(p,O,z;_, $,,zi,_,)pdpdCdz(6)S$ _- , " , ~

where (s,t) E {p,¢,z} indicate the direction of the source and test edges,

respectively. Since the fundamental weight vectors (4) are aligned along

orthogonal directions, (6) is symmetric with respect to the source and test

lll)O r(1)iJ_ and thus, only six combinations of (s,t) for I{1)edges (e.g. ,_, = ,,_ j,

need be determined and only three such combinations are required for i(2).
They are

10



+,_'[ ("_)/o°'Io- <Lifo-_,I,_o+

__(__1)f+":=-__,)::-+,),,:]2 \?:

1(1) s_st [-p,_ _ tT 2 2pbln + _bt 1 b (: -'_+)(z - zt)dz

l

4'2 - _:: - _

2(p_--p'_) --2t(/_,+/5,)+/5'tStln Z '

iI1) _:%_t L pb°= _ r2 (p - _,)(p- th)O
a

= _ (ta) _ a - -

:2

t:'l ++m,+tp_In (_- <_,)(6 - 4)t)d+ ["(z - :,)(z - :,)dz
-_ - (ahp , +=+

"°° - (:_ 3 "

+'(z - ;.,)(z - ;.,)dz
b

1!2_ +,,_,th 1 i..._ _ (,o)'[_(,,:_,,:)+_:,,.+,,,)(,,__,,_)+:,,.,_,(,__,,_o)] x
£'+:°-+.):°-<+,)+

where each of the unevaluated integrals are of the form

]_ (+- +,)(+- +,),++

(7)

1
1 _,) + (U +-L m) ++o_+(U-L)=:W-v,)(+.+ :

(s)

11



The [A] matrix is assembledby evaluating (5) for eachelementcombination
wl,ich conlain tile i th and jth unknowns. Since the integrals (6) are sym-

metric, only lhe upper triangle or lower triangle of the FEXI matrix need })e
sl ored.

2.3 Boundary Integral Matrix

The entries of the boundary integral sub-matrix. [_], couple the interior

fields of the FEM system and any external imp,'essed fields. In addition, the

boundary integral provides an exact boundary condition for mesh closure.

The entries of [_] are

('-;,, = (/,'oa)2_ _ ll;(a,o,::fii, oi,_i,_,).
' 3

[ -- ]f_(., o, :) x a2(_,,;, _) x/,(a, o, :')

I t "*

•IV,(a. O, z ;fi), Oj, :.,, ._j)do' dz'dOd: (9)

and we note that the global nature of the Green's function implies a fully

populated sub-matrix (e.g. all boundary unknowns couple to all the other

boundary unknowns). The surface weight functions in (9) are the volume

weight functions (3) collapsed down to a cylindrical-rectangular patch on the

surface of the cylinder, p = a. The dyadic Green's function _,2(a, ¢, 5) is of

the second kind and it satisfies the Neumann boundary condition

,_x v x U2(a,8,_:) = o. (lo)

on the cylinder's surface as well as the Sommerfeld radiation condition. It

can be expressed component-wise as

(11)

where the unprimed unit vectors are functions of the test point (a,O,z) and
_t t

the primed unit vectors are functions of the source point (a,o,z). The

components may be exactly expressed as an angular eigenvalue series [8]

C'_(a'¢'5)- (27r) 2 ,,=-o¢ _ _o t' g'n(2)(1')

12



l k/:
1 _ 1 VH_I2)(_) ( ,,k. _2 H_:,{. ) 1 e't"d'-k';')dk=(:- ,;',- ) - (.2 ) 7 L c( \ J H:(')(- )

(12)

ttowever, for large radius cylinders, (12) is computationally prohibitive.

Instead, it is advantageous to employ one of the available asymptotic approx-

imations of _2(a,0,5) [9, 10, 11, 12]. These approximations improve as the

cylinder radius and the geodesic distance between the source and observation

point increase. Since each approximation invokes Watson's transformation,

thus converting the angular eigenvalue series of (12) into a creeping wave se-

ries, the geodesic or on-surface ray parameters are necessary in describing the

interaction between surface fields. The formula due to Pathak and Wang [9]

have proven most accurate for our applications since the regions where Bird's

formula [12] and Boersma and Lee's expressions [101 are superior (paraxial

and far-zone) correspond to situations where coupling is small. In addition,

we shall find it necessary to employ a regularization process to correct for

errors in computing the near region (s ---) 0) and to also allow evaluation

of the singular integrand as (e_, z) --.+ (8', z') which mitigates any advantage

that the more complex formula have with respect to Pathak's expressions in

the near-zone. Using a uniform expansion of the Hankel functions in (12)

and a first-order evaluation of the axial wavenumber integral, Pathak found

that

2r (

G¢_(a, _,_) ... jk°qe-Jk°_ sinOcosO{ (1- aq(1- q))v(/3)}
2rr

G_(a, Zp,_) - -Jgk--'_qe-Jk°" { (sin20 + q(1- q)(2 - 3sin_O)) v(')

+q - }
(13)

[ _o,20 1-_ and the geodesic parameters are given by
where/3 = k.s [_l

13



'2. Geodesic trajectory (0 = tan -1 [_])

=...2_3. Approximation order (q koS)

where _ = o or _ = 2z - o depending oil which of tile two direct paths

illustrated in figure 3 (the short or long) is used. In (13), _z(._') and v_(3)

represent the soft and hard surface Fock functions, respectively. These func-

tions are characteristic of the creeping waves on a circular cylinder and are

discussed in (letail by Logan [14] along with their evaluation.

As stated previously, a regularization process is necessary for the accurate

evaluation of (9) especially when the source point and test point coalesce.

Bird has shown [12] that Pathak's approximation (13) reduces to the metallic

screen Green's ft, nction, 2G;o(a, o. 5.), modulated by t,(_3) within the available

order (O(q-2)). This suggests a regularization procedure where the metallic

screen Green's function is subtracted fi'om the cylindrical Green's function,

thus rendering it non-singular, followed by an addition of the planar contri-

bution. The non-singular Green's function is given by

jko _,_o_{ (cos20+q(l_q)( 2 3c°s20))[v(3)- l] }G:-'(a, O, 5) "-. 2rr, qe

G (a,O,e) --. 2rr sinOcosO (1-3q(1-q))[v(3)-l]

" - jko -jko.{(sin20+q(l_q)(2 3sin20))[v(_)_llG¢¢(a, o, 5) ".. 2_r qe

+q [sec20(tt(/') - v(/5))] }

(14)

and this asymptotic form of the Green's function is used for all short path

contributions whereas (13) is used for the long path contribution in which

case curvature effects are expected to be prominent. When the regularized

integrand is used, the contribution of the planar Green's function

Gij = 2(/%a) 2 ['i'/t(a, ¢, z;/_,, 5i, --;i, si)"
|

t4
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Figure 3: Geodesic paths on a circular cylinder.
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w}]Pl•e

is added to (14)

[ - ' l_(.,o.:) × U;o(.. 3. =) × _(a.o .:')

•II"_(.. ,z'._j,oj,zj.g_)do'dz'dod:

_o(a.3,:) = 7 + -47,77

(1.5)

(16)

G,j = _',j +C'P (17)

which is used instead of (9) with R = s and 7 = 2,_ + _,_ + _5. Upon use of a

common vector identity and the divergence theorem [,t], we obtain from (15)

(;o- (/"°a)2fsfs2_ lI"t(a, O, z; Pi, Oi, =, -,, ;_i) ' 7
)

• l_(a, o', z';/b, oj, 53, _:)d¢' dz'dod:

2_- v. _(_, o, =) x ff,',(a, o, - _,, ,;_, = =
, j ~' ~i,_i)

" f (oo':'I ' ' "-• , , x l'_;(a,o,z:p3,o3, z_,_j) "--_--do'dz'dOdz

(_s)

and this form of the boundary integralmay be readily evaluated even as R

vanishes by employing the regu]arizationprocedure used by Jin and Volakis

[4J._,¥enote that v(/3)--_I as a --,oo and hence the regularizedintegrand

(14) vanishes leaving only the planar contribution (18). With the specifica-

tion of both the FEM matrix, [.4],and the boundary integralsub-matrix,

IG],the unknown fieldscan be determined for a given excitation.In the next

section,explicitevaluationsof the excitationfunctions appropriate for plane

wave scatteringand probe-fed antenna applicationsare given•

3 Excitation

Two sources of electromagnetic fieldsare considered: external sources (plane

waves) for scattering analysis and internalsources (probe-feed) for antenna

16



parameter calculations. Tile use of tile exact boundary condition in (1)
allows the coupling of an exterior excitalion field into tile cavity' while title

FEM formulation itself [2] readily permits n_odeling of interior sources. In
di dtthis section we describe the form of the sourer ['unctionals f_.t and/-,,,t along

with their tmmerical iml)lementati°n'

The forcing functional, j._:.t due to exterior sources is gi\'elt by

I

fs ' '" ')" " ')f'_'=jZol,'oa I t'i(a 0 z fi(a,O z x _U_l(a,O ' z')do' dz (19)
t

where 171",(p. o, z) is the testing vector for the i th row of the matrix and /l_Yt

represents is the magnetic field on the cylinder's surface in the absence of

the cavity. For plane wave incidence

_#' = _,e-J_o(/''')

/?' = _;(/c.' × _')e -_k°t_'''_

= _:,[_,'sin:,_oso,- g,'_os_- _sin'1si,,o,]_j_oi,,.,.o.co_(o-o,)+:co-,l
(20)

where (Oi,oi) indicate the direction of incidence, 3' is the polarization angle

and _i = 0'cos _t + 0/sin 3. The total surface field is given by

_$

H'-'Yt(a, O. z) = Ifi( a, O, :) + H_.t(a, O, z) (21)

with

sin-rdkoCO,0,=- [ eJ-(_+_-*,). ]
= J2Y°7-_'oa ,_=-_o [H2=)(koasinOi)]

e JkocosO, z _ COS_

= -2_; _ +rkoasinOi ,=_ .H}_2l(koasinOi)

si,,/ _ o__,] .._+._o,) (22)
J koa sin Oi H',(2)(koa sin Oi)] _

These expressions may be computed by summing only a few terms of the

series if koa sin Oi is small. However, ms this parameter becomes large (e.g.

for large a and Oi --* 90°), (22) may be replaced with equivalent asymp-

totic representations similar to those considered earlier. Utilizing Wa.tson's

17



transfornlation and Eocktheory [13] in connectionwith (2'2),w(, find that

'2

tI: _' -- 1}'; S_'t _ S_I/ 0,{ .'_0 cO" _1 : _ {--J_llJ_' ''11 _1 }_ [g{O'( '',+j} }] ]

p=l

2

,,,'H_ _l "-_ j2); cos'? koa sin 0,
p=l

-}o sin -/cos O,e ak°¢°_°'" __,(-1)PC -''k°aSinO'¢_' gl°)(m_p)
p=l

m )( ]"j l, asino g II mdOp) (23)

1

in which (I:)l - a_ - [_]5 and the '*'2 (o-o,),¢2=(o-oi)-5, m=
symbol indicates complex conjugation. The appropriate Fock functions are

[141_

jl e:('

°")(() = v_, fr _dt
jt e,J(t

f(0(_) = _ fr _dt (24)

where uq(/) and its derivative W'l(t ) denote the Airy functions and the inte-

gration contour is given by Logan [14].

The asymptotic formulas (23) are quite accurate except when o _ 0i. In

this region, Goriainov's [15] expressions

h'7' --- -_; sinosin 0,_'_°¢°"':{_-'_°""'"°'_'[,,0,(.,.1)]"
%

+eJko_.o, _o_(_-_,)[G(-m cos (O - o_))]" }
J

_-/2 {H; _* "-" j2to cosol, oasinoie -ik.¢°'°'" e --iko'''"°''h [f(°)(m(p,)]"

+eJkOa.i.o, ¢o_(_,-_,)[F(-m cos (o - Oi))]" }

2 Logan [1-1]uses the e-J"' time dependency in the definition of these functions requiring
the complex conjugation in (23)

18



(25)

with [14]

(26)

have been found to be more accurate and can be used instead of (23).

These surface field expressions may now be used to efficiently calculate

the entries of the column vector {j.,_t} via a numerical evaluation of (19). In

particular, the modal series (22) is used when koasinOi _< 10 and either (23)

or (25) for koa sin 0i > 10 as appropriate.

Conformal antenna patches are typically fed by a microstrip line printed

along with the radiator on the surface of the substrate The microstrip lines

are in turn fed by a coaxial probe which originates behind the cavity as shown

in figure 4. The patch may also be fed directly by the coax feed or through

some form of aperture coupling. Nevertheless, the principal excitation for

the system is given by

s:o, = -f. v× L
"L ,-! i'int

+j_oLoa (p,¢,z) .,[
l,-(_'i(p, ¢, z )p dp de dz

(27)

where _int and ffI i''t are the impressed electric or magnetic current densities

representing the sources. For a radially (#) directed probe feed, the impressed

monopole current located at (_,, z,) is given by

.,F_'_t = #1o 6 (¢ - ¢') (z - z,) (28)
P
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Figure 4: Probe-fed conformal patch antenna.
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which results in an excitation function (27)

"" -- c_i /z ,

\Vith both types of excitation and the FEM-BI matrix now specified, the

BiCG method may be used to determine the unknown electric fields within

the cavity.

4 System Solution

The FEM-BI system (2) may be solved using one of the popular direct meth-

ods such as Gauss-Jordan elimination, Gaussian elimination and LU decom-

position. Alternatively an iterative methods such as Hotelling's method,

conjugate gradient method or the biconjugate gradient method may be used.

We have chosen to use the symmetric form of the BiCG solver because it

requires much less memory than a direct method and more importantly it

can be implemented in a manner which is computationally efficient (utilizing

only one matrix-vector product per iteration). Although use of an iterative

method such as the BiCG method can require more wallclock time than a

direct solver when multiple right-hand sides are considered (such as is the

case with backscatter calculations), memory demand was deemed the most

critical and expensive resource. The BiCG algorithm is given in Appendix

A and the efficient FFT-based calculation of the boundary integral matrix-

vector product is discussed in Appendix B. In this section, we will present

details of this iterative solver specific to this application.

The BiCG algorithm requires one matrix-vector product per iteration as

shown in Appendix A. This operation represents the bulk of the computa-
tional demand of the method and requires (.9(N 2) complex operations in the

case of non-symmetric matrices. The matrix-vector product is carried out by

executing the sum

N

y[n] = [A]{x}= __, A[n,n']x[n'] n= 1,2,3,...,N (30)

and if the matrix is sparse, a storage scheme such as the Compressed Sparse

Row (CSR) format may be used to reduce both the memory demand and

21



conlputational load. Usingtile CSRsclmme,(:50)can be rewritten as

,'[nl

,["l = [A]{.}= E A[c[,,.,,']].,.[,,'],,=i.'2.3 ......V tall
I

7t _t

where r[,,] is the number of non-zero entries per row of the mat ,ix and e[n. ,,']
indicates which entry of the long data vector, .4. is associated with the matrix

entry A[n, n']. The FEM matrix, [A] in (2) is such a sparse matrix. Although

additional memory savings are possible since the FEM matrix is symmetric

(thus only upper triangle of the matrix need be stored), experieltce tlas shown

that use of a symmetric matrix-vector product leads to a severe performance

degradation on vector computers (such as a CR:\Y) due to the resulting short

vector lengths. Therefore. the entire sparse FEM matrix is stored and used

in the product so that the code's perfo,'mance is maximized when executed
on vector architectures.

The boundary integral matrix-vector product involves the fully populated

matrix, [G]. If uniform surface elements are used in the discretization, this

matrix-vector product may be expressed as a truncated.discrete.linear con-

volution and thus amenable to efficient calculation using the Fast Fourier

Transform (FFT). Although uniform zoning imposes restrictions on the ge-

ometries which can be analyzed by this FEM-BI technique, the resulting
memory and computational efficiencies have proven to be well worth the

sacrifice. The boundary integral product is implemented as described in

Appendix B with the following problem specific exception. The cross-term

arrays do not possess the property: G_: [m - n_', n - n'] = G_. [,,z' - m, n' - n]
and hence the periodic replication rule (B-aS) cannot be used here. In-

stead, a different replication rule was developed in performing the discrete

convolution. The resulting code has proven robust even for large arrays. In

addition, the cross-term replication rule must be changed for wraparound

arrays since the cavity discretization is fundamentally different than is the

case for cylindrical-rectangular cavities. We note that these replication rules

are not unique and are implementation dependent. The resulting replication

rules used in this project are given as Fortran code in Appendix C.
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5 Scattering and Radiation

Once the cavity aperture and volume electric fields have been determined for

either an external excitation (scattering) or an internal excitation (radiation),

several engineering quantities may be calculated. The aperture fields may

Be used to determine the Radar Cross Section (IRCS) for scattering or the

radiated fields for antennas. This entails the convolution of the aperture fields

with an appropriate Green's function. In addition, the input impedance may

be calculated by using the interior cavity fields. In this section we will present

the relevant formula for calculating the far-zone radiated/scattered fields and

the input impedance from the electric fields.

5.1 Far-field Evaluation

Two of the most important applications of the presented formulation deal

with the calculation of the cavity's RCS and the radiation pattern due to

sources placed within or on the aperture of the cavity.

We begin with the integral representation of the scattered magnetic field

in terms of the aperture fields. We have,

Js '¢"/¢_(r, 0,¢) = j_okoa _,,2(r,O, cp;a z').

[t_(a,¢', z') x E(a,¢',z')] de' d:' (32)

with (r,0,O) indicating the observation point in spherical coordinates. When

the observation point is very far from the cylinder, the dyadic Green's func-

tion in (32) can be replaced by its far-zone representation

_2(r,O,O;a,¢, z,),_ e-jk°r [G,o¢O_p'+GOZO; +GOe_(pS' ] (33)
kor

where the unprimed unit vectors are functions of the observation position and

primed ones are functions of the integration point in (32). The components of

this far-zone Green's function are determined by a mode matching procedure

giving

GO_ .,. j 2kocosO ejko¢O_e _' _ , n ej,,(_+(_,_ _ ))
(2rr) 2 (koa sin 0) 2 ,_=-oo H'_12)(koa sin 0)

23



GOt (.)= )2 a
- ,,=-× tI_(2_(t,'o0 sin 0)

,-r tG¢ ® j "2 , 1 e jn(_+[°-° )) (34)
('27r)2 asin0 #k° c°Se" ,_=_-_ ii!2)(1,.asinO)

As one might expect, these series converge rather slowly for large koa sin 0.

Tile)' must therefore be recast in another form by employing \Vatson's trans-

formation and Fock theory as described before. We have,

G °° t. cosO#_, c,,.,o: 2 [ 0 g(1)(m_p)]4= _--_'_(--1)Pe-3k°<'si"0¢t' 9(°)(mqbv) - Jl,'oasin
p=l

2 .

4,'r
p=l

2 ,,

_,r_O H_2 cos Oz' " sinOq_p [ ]2art sin 0 cA`° _ e-Ja°_ f(°)(mq_p) (35)
p=l

where the al)propriate Fock functions are given by (24). As expected, when

o' _ O, the formulas attributed to Goriainov [15]

Goea

G Oz

_7° COS0 jkocosOz' { [g(O)

C c-3koa Sill 01_11

4r, (m¢1) -

[ , m#ko_S,,0¢os(¢-;) G(O)(_mcos(¢_ 0 )) - J koasin 0

t,.osin O jkoco_o..' f e-_ko_Sioo, l r
"- -e i, tg(°)(m(D1 )]" +4_

[C;,o,(_m(,,_ }

~ 72z_2 _,_o¢o_0.-'/ e-J_°° si. 0¢l2a_ sin 0 e [f(ol(m,, )] +
k

- *'))]"/efl koa sin O cos ( _-dp' ) [ro,(_mcos(,,
.1

]"l_ ] *'J koasinogll)(m¢_l) -

(;(')(-mcos(O-O'))]'}

are more useful. The far-zone scattered or radiated field can be computed

numerically by using either (34),(3.5), or (36) in (32).

(36)
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Forthe scatteringproblem,the RCSis most often the ctuanlitv of interest.

This is given by

IH'("'°" °)1 (37)
o'(0, o) = lira 4:r 2" -

{H,(,..o.o)l

Alternatively, the antenna gain may' be computed from tile far-zone fields as

where Acre is tile wavelength in centinmters, Bi,_ is tile input resistance which

is given in tile next section and E * is the radiated electric field as r _ v_.

For comparison with other techniques which define the RCS in terms of the

electric field instead of the magnetic field in (37), these two fields may be

related by

E_ = - Zo Ho

Ee = ZoH¢, (39)

in the far-zone. This must be considered when referring to the polarization

of an incident or scattered field.

5.2 Input Impedance

In addition to the antenna pattern and gain, designers are concerned with

the input impedance of an antenna for feedline matching purposes. The

FEM approach allows the calculation of the input impedance of the radiating

structure in a rather eloquent manner. The input impedance is comprised of

two contributions [19]

Zin = Zp + ZD (40)

where the first term is the probe's self-impedance which is the impedance (

e.g. the probe's impedance in the absence of the patch) and the second term

is the contribution of the patch current to the total input impedance. The

probe self-impedance accounts for the finite radius of the probe and hence is
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on_itted wlwll a zero-thicknessprobe is assullwd. Ignoring tlw probe-feed's
s*'lf iml)e¢l_tjlce,wehave [19]

_ 1 f _(p,o.z).j,r,,,t(p,o.z)pdpdodz (41)Z]_
/2 ,,

where the impressed current is given by (28), I] refers to the volume elements

containing tile probe-feed, the electric field is the interior field associated with

the feed edge and Io is the constant current impressed on the probe. Utilizing
(4) and (28) into (41) yields

-siP8 in (p_,)
z,,. - E(;): '

which must be summed over the four radial edges of the element which con-
tains the feed.

6 Validation

ttaving developed the FEM-BI formulation for cavities recessed in an infi-

nite,metallic cylinder and having implemented the technique in a manner

which has low computational and storage demand, a essential task is the val-

idation of the written computer code. Unfortunately, although their is much

interest in the scattering and radiation characteristics of conformal patch

arrays, a survey of the literature indicates a dearth of published data. We

are currently awaiting measured data pertaining to a four-patch wraparound

antenna mounted on a low observable test structure which is illustrated in

figure 5. Until that data is available, we must resort to limited validation

which either considers quasi-planar configurations or curve patches excited

by a normally incident plane wave. We shall now look at such preliminary
validation of the code.

6.1 Scattering

The first validation effort for scattering by cavity-backed patch antennas

relies on the fact that a small patch on a very large radius cylinder is quasi-

planar and approximates rather well an equal sized planar patch. For our
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test we chose as a reference a planar 1.-148" × 1.083" patcll residing on a

2.89" × 2.10" × 0.0,57" cavity filled with a dielectric having ¢,. = 4. Tile

equivalent i_atch on a 10,\ cylinder is 6.46 ° > 1.083" residiltg on a 12.90 ° ×

2.10" × 0.057" cavity. Figure 6 compares this work with tile planar result

computed using a similar FEM-BI code for cavity-backed antennas recessed

in a groundplane. Although figure 6 illustrates only monostali( scattering in

the 0 = 90 _ plane, additional runs for norlnallv incident monosl at ic scattering

and various bistatic situations yield similar agreement.

Comparisons may also be made for elongated cavities and 2-D MoM re-

suits, l.ong narrow cavities have very little axial interaction for principal

plane (0 = 90 ° ) excitation and therefore results based on this formulation

should compare well with corresponding2-D data. It is well known, that the

t/('S of the 3-D scatterer of length L >> A0 is related to the corresponding
2-D scattering of the same cross section via the relation

O'3D -- 9 O-2D (43)

Such a comparison is shown in figure 7 for monostatic scattering by a 45 ° ×

5A × 0.1A cavity for both principal polarizations. Once again the agreement

between the two results is excellent, thus providing a partial validation of the

new code for highly curved geometries. We remark that similar agreement

has been observed for bistatic scattering in the 0 = 90 ° plane.

The planar approximatiou eliminates the effects of curvature, which is

a primary interest in this work, and the 2-D comparisons done above are

only valid for normal incidence. To consider oblique incidence on a highly

curved structure, we resort to comparisons with a Body of Revolution (BOR)

code for wraparound cavities. Since the BOR code can only model finite

structures, we simulate an infinite cylinder by coherently subtracting the far-

zone fields of the finite structure without a cavity from similar data which

includes the cavity. This process is illustrated in figure 8. This procedure is

suitable for near normal incidence and was found acceptable for near grazing

incidence as well in the case of H-polarization (a = 90 °) case shown in figure

9 where the data is taken for bistatic scattering in the ¢ = 0 ° plane due to

plane wave incidence at Oi = 90 ° and ¢i = 0 °.

Although the agreements with the results presented above give us con-

fidence that our implementation yields accurate data, agreement with mea-

sured data of the geometry shown in figure ,5 would provide a more secure
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validation. File test body is a twelve inch long metallic cylinder with a radius

of six inches. Tile cylinder is terminated with 5:1° ogival end-caps which min-

imizes the scattering by tile terminations (tips). The wraparound cavity is

•)" 16" - -x O. and four identical inetallic patches are symmetrically place around

the cylinder where each patch is 1.047" x 0.69".

6.2 Radiation

As was the case for scattering, the amount of published data suitable for

validating our fo,-mulation and associated code is quite scarce. There are

various approximate cavity models available for coated cylinders and even

some measured data [16, 17, 18]. However, there is no cavity-backed patch

antenna data vet available. Nonetheless, we may compare our results with

planar results for an initial validation.

Figure 10 compares the co-polarized antenna pattern for a 4cm x 3cm

l)atch antenna in a 6cm x 5cm x 0.0795cln cavity recessed in a metallic cylin-

der whose radius is allowed to vary. The substrate's permittivity is e_ = 2.32

and the feed point is at (aO, = 2cm, z, = lcm) relative to the center of the

patch. The small glitches in the curves associated with the small radius cylin-

der is due to the far-zone formulas (34) and not due to the FEM formulation.

The series (:14) rely on delicate cancellations which are difficult to achieve

numerically. Nevertheless, the agreement between the planar result and the

case where the cvlinder of radius 100 cm (_ 10,\ at 3.17 GHz) is excellent.

Clearlv, curvature has no effect on the forward direction (¢ = 0 °) but the

curvature effect is pronounced at ¢ = 90 °. We believe that this broadening

of the pattern as the radius decreased may be explained by considering the

apparent size of the patch when observed at (0 = 0 °, 0 = 90 °). As the radius
of the cylinder decreases, the patch's planar projection becomes smaller re-

suiting in a broader pattern. Another concern for an antenna designer is the

effect of the cavity termination on the radiation patterns. Figure l l shows

the gain pattern for the same patch placed on cavities whose azimuthal ex-

tend varies from 65 ° to 360 ° (wraparound). Obviously, near the resonant

frequency, the effect of the cavity termination edges is only apparent near

a) = 180 ° provided the cavity is small. For this test, the patch occupies 45 °

of the cavity and hence the 65 ° cavity has only 7.5 ° (or 6.5 mm) to spare

on either side of the patch. Larger cavities are associated with higher gain

in the rear direction (¢ = 180 °) possibly due to creeping wave effects. The
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backwardgain is of interest to low observabh'antennadesignsand wenote
that l)lanar approxinlations are of no use for such antenna designs since there
is no backward radiation.

In addit ion to radiation patterns, designers are interested ill input impedance

calculations. Figure 12 compares our result for a quasi-planar patch and vali-

dated data for the planar patch antenna considered previously. Also shown is

tile input inlpedance calculated as a function of fiequency for a highly curved

cylinder (a = .5 cm). The decrease in the input resistance is typical of curved

patches (see for example [16]) and we note that the resonant frequency has

not moved consistent with T.11ol mode excital ion. \Ve are currently pursuing

the validalion of our code with reference measured data fo, curved patches.

7 Future Work

In this report, we have presented a FEM-BI formulation suitable for cavity-

backed antennas which are recessed in a circular,metallic cylinder. Along

with the formulatiou, we presented an implementation strategy, which mini-

mizes both computational and storage demand. Key to this goal was the use

of asymptotic formulas for the dyadic Green's function and the use of the

FFT-based matrix-vector product in the BiCG solver. The resulting com-

puter program has been validated, to the extent possible, for both scattering

and radiation problems.

In the near future, we want pursue further validation of the written FEM-

BI code by comparison with measured data for curved cavity-backed anten-

nas. This will be the first such comparison available to the electromagnetics

community and hence will form an important resource for future work. Upon

establishing full confidence in our implementation, we will then be able to

study effects due to patch and cylinder of curvature on antenna parameter

and scattering properties. We believe that the numerical laboratory de-

veloped herein will provide a powerful tool for the analysis and design of

conformai antenna arrays on curved surfaces.

Having produced a code suitable for antennas mounted in metallic sur-

faces, we want to continue this study for coated structures. The FEM-BI

method will allow accurate computation of the input impedance, radiation

patterns, scattering for large complex antennas mounted on inhomogeneous

substrates. Another possible implementation could use Absorbing Bound-
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arv ('onditions (AItCs) for mesh termination thus retaining a sparse system.

tIowever, tile accuracy of FEM-ABC fornmlations for input impedance cal-

culations }lave to be established and this will be an important part of this

investigat iol_.
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A BiCG Algorithm

The biconjugate gradient (Bi('G) algorithm is one nmmber of a family of iter-

at ire solvers which have proven useful in computational electromagnetics [20].
The BiCG ,mlike the conjugate gradient (('G) method does not guarantee

convergence I)ut does have the advantage of ulilizing only one matrix-vector

product in its symmetric implementation. Although the convergence char-

acteristics of the BiCG algorithm is erratic (see for example figure A-I), it

often converges in fewer iterations than the ('G algorithm. This appendix

lists the Bi('G algorithm appropriate for use with symlnetric matrices [21].
Consider the system

[A]{x} = {b} (A-l)

where [A] is a symmetric matrix, {.r} is the unknown data vector and {b}

is the excitation data vector. The BiCG pseudocode follows (assuming an

initial guess {.r}, which may be {0}:

Initialize:

Iterate:

{,.}, = {1,}-[A]{.},
{p}, = {b}-[A] {.,.},

< {,-}., {,-}:>
(l n ._

< [A] {p},,. {p}_ >

{*}.+1 = {x},,+ a. {l'}.
{r},_+, = {r}. - a.[A] {p}n

< {,-}.+,,{,'}:+, >
C71

< {,'}., {,'}: >
{p} = {"}.+1+ c,,{p}.

where the Euclidean norm is given by

M

< {x}, {I,}> = _ .,+,,]t,'[,,,]
m----I

(A-2)

(A-a)
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l_l (A 2) tile subscriI)ls refer to the iteration and the sx'i_ll,ol "*' denotes

cOnll)lex colljugalion. Many termination crit,,ria have t)e¢,i_ us_.d in the pasl
One of the i,losl popular is

< {"}o+_.{"},,+, >
< {_,}.{t,}> < e (A-4

where e < 0.01 is a typical acceptable tolerallce. As can be _'xpected, the

tolerance may need to be tiglltened or relaxed depending on the problem at

hand and the desired accuracy of the result..'N'ote that e should l)e kept small

for antenna iml)(,dance COmlmtaiions but (all I)e relaxed for scattering and
radiation 1)a! tern calculat iolls.
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B FFT-based Matrix-Vector Product

The numerical solution of integral equations (IE) (or boui,l_lrv integrals)

is often performed by converting the IE into a linear systelll if equations

using tile method of moments (MoM) procedure. Ttle Mo.Xl solution often

requires the generation and storage of O(,V 2) matrix entries and, if a direct

solver such as Lt" decomposition is utilized, O(N 3) operations are required,

where N is the number of unknowns. If an iterative solver such as the

biconjugate gradient (BiC(',) method is used, the solution can be found in

O(r. i..\,2) operations where r is the numl)er of right-hand sides and i is

the number o[" iterations per right-hand side. tlowever, for circulant or block

circulant matrices, the solution may be reached in O(r. i. 3,'log.V) operations.

This requires the use of FFTs for computing the matrix-vector products in

the BiCG algorithm and consequently the resulting solution scheme is often

referred to as the BiCG-FFT method. In this appendix, we will present

specific examples of this efficient technique for 2-D and a-D geometries. We

will first look at the relatively straightforward 2-D problem followed by' the
necessarily more involved 3-D case.

B.1 2-D Integral Equations

Suppose a fiat resistive strip centered at the origin of the v=0 plane is excited

by an E-polarized (TM=) plane wave as shown in figure 13"-1. The appropriate

Electric Field Integral Equation (EFIE) may be formed by enforcing the

resistive transition condition on tile strip giving

E;(x) = R(x)J:(x) + _ J:(x')H(o 2) (ko]x - x I) dx'
2

(B-I)

where E_(.r) is the incident electric field, R(x) is the normalized resistivity as

a function of lateral position. J:(x) is the equivalent electric current on the
.-- 2_rstrip induced by the incident field and ko _ is the free-space wavenumber.

The time dependency e j"a is assumed and supl)ressed. In (B-l), the primed

coordinate denote the source point while the unprimed ones indicate the test

point. Once the current has been determined by solving (B-l), the scattered
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Figure B-l: Flat resistive strip geometry.
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field in the far-zone is given by

I":(o) '-- _ -Zo _ .L(.r )d k°': c°"°
(B-2)

where Zo is the free-sl)ace intrinsic impedance.

We proceed with tile nmnerical solution of (B-l) by exl)allding the un-
known current in terms of subdomain basis functions as

/_' -- |

.]:(.,.) = _j[,,]_v,,(.,.) ([_-3)
n=0

where

tL' U'

--- <.r < (,_-l-l)A,r---ll;,(x) = IV(,r) n_Xx o- - ")

= 0 cl._ (B-4)

and .Xx = ,-%. The weight functions W(x) may assume various forms, one of

the simplest beingapulse(W(x) = 1). Substituting B-3) into (B-l) and

performing Galerkin's testing, we obtain

tt,

/2 ),:(.,.),,
2

N- I u,

n II' x x +

nl:O 2

i,u

/_/_: }I,-o _ l.V,,(x)ll;,(x,)g_2)(l,:olx_ x,l)dx,dx

(B-5)

which is the discrete form of the integral equation. When pulse basis func-

tions are used, (B-5) becomes

(n+I)Ax-- -_ E;(x)dx
Ax__ w

2

j[,,'] ,_[,,-,, ] ("+')"'-_ R(x)& +
Jn_x -w-

i 2rt .-_ 0

# ly

kof,.+,,'.-_ f(. +,,A.__-(_'(kol_-x'l)a_'ex}_ J,,a=,-_ J,,'ax-_ -°
(B-6)
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wheretile l,_roneckerdelta function
i I

_5[,,-n] = 1 ,, =n

0 n :/: n' (B-7)

has been introduced. Assuming that tile resistivity is constant within a

segment (e.g. R[n] = R(x) for n_x <_ x <_ (n + 1)_x) and making the
i

change of variables{=x+2,"' _¢' =z +_-,_' we have

N-1 ,1{J[,, R[n]__k.r/_[,_- ,,'] +
n t _0

#

T a,,,a_- a,,'.a_ " - [)d(dg

(B-S)

We now observe that the double integral is in convolt, tional form and since

the segmenls are of uniform length (..Xx), we may introduce the discrete

function

,a[,,- ,,'] = 7a'° a'°lx- "/l)d( (B-9)

and rewrite (B-8) as

a.:v

N-1 N-I

_.,, __, g[n'lR[nl6[n- n'] + y_ J[,,'19[n - n']
n I ----0 n s -_0

(B-10)

Tlle first sum in (B-10) is recognized as the product of a diagonal matrix

(._kxR[n],5[,,- ,,'1) and the unknown data vector (J[n'], n' = 0, 1,2, ...,N- 1)

where as the second sum is a truncated,discrete,linear convolution.

The discrete form of the IE (B-10) may be written as a matrix equation

[Zl{a} - {f} (B-11)

where the excitation vector entries are given by

/[,,] = ,....

46



and tile imlwdance matrix is given by

Z[,,.,,'] = _X.z'R[,,],_[,,- "'] + g[',- ,,'] (B-I:_)

A]ternatively. in preparing to take advant age of the convolut ion property.
we may rewrite (B-10) as

Obviously, the first matrix-vector product can l)e trivially computed in N
operations

.,_[,,}= ,J_[.]_x,..[.] . = 0._..2......v- (B-I,_)

but the second matrix-vector product involves a fully populated matrix and

would thus normally require O(N 2) operations for its execution. However,

since gin - I_'] is a discrete convolution operator, the product may be com-

puted in only O(.VlogN) operalions by invoking the discrete convolution
theorem

where • denotes a Hadamard product and the discrete Fourier transform

(DFT) pair is given by

M- 1

{}I,,,]}= E
rrt=O

1 }tl-i

q=O

(B-It)

The pulse operator H[N] indicates that only N of a possible 2.\ r - 1 values of

the discrete convolution are retained. Also, the DFT (and its inverse) operate

on periodic sequences of period M (all sequences with a tilde are periodic in

this appendix). In (B-16), the DFTs must be of length M _> 2N - i since

a minimum of 2N - I entries are needed for the complete specification of

gin- n'] as n and n' vary frorn 0 to IV- i. The unknown iterate (.]P) is
given by

3v[n] = J[,,] n=0,1,2,...,N-1

0 n=N,N+I,N+2 .... ,M- 1 (B-18)
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wlwreasth,' Green'sfunction sequenceis given by

0[,,] = ,, = 0, 1.2...... \ - 1
),I

n= N,N+I.'_I+° --- 1

:11

+2,...,M-1

= 0

M M (B-19)
= 9[M-;7] n- 2 ' "2 + 1,

and we have assumed that gin !n'] = 9[,,' - hi. Note that in (B-19), if

M > 2N- 1 it is necessary to pad ._[n] with zeros in the middle of the sequence

as shown. Also. only the tirst row(column) of the Green's function matrix

( [g[" - ,,']])need be explicitly computed since this is a Toeplitz matrix thus

ensuring low C0(N) memory demand. In generating the Green's function

sequence, typically the first segment (left most) is used as a source while

the non-periodic sequence (9[hi) computed bv testing at all segments (e.g.

let n' = 0.7_ = 0, 1 ..... N- 1). Thus all test segments are to the right of

the source segment. If this sequence did not have the synlmetry property

(g['_ - n'] = 9['" - hi), the interactions with test segments which are to
the left of the source would need to be computed explicitly. Alternatively,

if the sequence possessed anti-symmetry (9[" - "'] = -9[ n' - ''])' periodic

replication is still possible with the following modification to (B-19)

0["1 = gin] ,,=0, X,2,...,X-1
M

0 n=N,N+I M +2,...,_ - 1
= ' 2

m at m
= -g[M-.] n- 2' "2 +I'Y+2'''''M-1

(B-20)

Combining (B-15) and (B-16), the matrix vector product in the iteration

cycle of the BiCG-FFT method is efficiently' computed ms

[Z]{J p} = 2xx{J_'[n]R[n]}+ H[N]_'_ _ {9VD{JP}*UD{0}}(B-21)

This computation requires O(N + ( M ) log2(M)) operations provided radix-2

FFTs are used in (B-21) and should be compared to the standard matrix

vector product

N-1

[ZI{J"} = __, aP[n'lZ[n,n'] n =0,1,2,...,X-1 (B-Z2)

n r =-0
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Figure B-2: Comparison of operation count for a full matrix-vector product
verses a FFT-based matrix-vector product.
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Figure B-2 illustrates the COml>ariso'_ 12etw('('n (B-22) and discrete convolu-

tion (B-21) computed using radix-2 FFTs. ('lea,'ly, for .V >_ 30, (B-16)is

more efficient than (B-22).

Another 2-D geometry which yields systems which may be converted into

ci,-culant malrices is the circular strip such as the one shown in figure B-3.

The EFIE for a resistive circular strip is given by

E;(o) = tc(0)J:(o)+ -7- a=(o')]/__) 2ko,,sin o - o
(B-23)

where a is the radius of the arc and a is the subtended angle. Note that if

the arc is closed, the a = 360 _. A discrete form of (B-23) may be obtained

by using pulse basis and uniform zoning (.30 = _)- We have

ot

[(n+,)_o_:_(o- =,)ao
anA.O

N-I _ IJ[,, 1 1_[,,1-_o_[,,-,,'1+
rt I _0

r,+,,,or,<+,,0 0--_ a,,a_ J,,' ao

which is similar to (B-S).

given by

ko.[(-+')'° [(-'+')_°
9[n-n'] - 4 a.,,o a,,",*

(B-24)

The entries of the Green's function matrix are

sin (¢ -

(B-25)

H_2) (2koa I

Indeed, (B-24) may be solved in exactly the same manner as (B-8) using

FFTs. The only difference between the flat strip and the circular arc is a

possible additional symmetry present in the Green's function sequence. If

the arc is closed (a = 360°), we find that

N_ 1 (B-26)
9[ N_n I = gin] n-'- 1,2,3 .... ' 2

which indicates that N + I entries of the sequence need be computed rather

than N. Therefore, the solution of (B-24) for a = 360 ° requires roughly
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Figure B-3: Circular arc geometry.
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half the nul_ll)er of matrix (qllrv evalualions as compared to all equal lenglh

[]aI strip, l"Or a < 360 _, a similar synlnwtvv exists to a h'sscr extent as

lotlg as o > lSO". In this case, although the Green's functiotl seqtlence (B

:2.3) is perio_lic, it is incorrect to assume tha! (tt--2.1) now invt_lx'es a circular

convolution. The convolution is still a truncated,linear,discrcteconvolution

and in praclice lhe additional symmetry of (I}-26) is not exl_loited unless
matrix build time is excessive.

B.2 3-D Integral Equations

As was the case for 2-D geolnetries, there are certain 3-D geometries which

admit efficient solulion melhodologies by making use of the FFT-based im-

plementalion of matrix-veclor products. Three of these geometries are the

fiat plate, an impedance insert in a ground I)lazle and an impedance insert in

an infinite metallic circular cylinder. These geometries are shown in fgure B-

,1. We shall now proceed with the formulalion for the later two problems {e.g.

the planar and cylindrical ]izserts) using a general coordinate system. In the

following, the general coordinates (u,v) may be considered as (u = x,v = y)

for the planar case and (u = ao. t, = :) for the cylindrical case.

An integral equation may be obtained by enforcing the standard impedance
boun(tarv condition (SIBC)

h × h x E(u.c) = -qZoh × /l(v,v) (B-27)

where 5 is an outward directed unit normal and the total magnetic field is
given by

/7(,,,,,) = _°(,,,,,) +

jko}o G2(u u,v v) fi'- - • x ffT(u ,v') du dr, (B-28)

where ,,7 denotes the surface of the insert. In (B-28), the geometrical optics

fields /_g°(u, c)is comprised of the incident field /-ti(u, v) and the reflected

field H_(u, v). For the planar geometry, the second kind Green's function is

given by

G2 (u - u , z, - z, )
• t t

,;_,,= + ]
4rrV/(U - u') 2 + (v - v') 2

(B-29)
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Figure B-2 illustrates the comparisonbetween(B-22) and discreteconvolu-
(B-21) computed using radix-2 FFTs. ('learly, for N >_ 30, (B-16) is

efficient than (B-22).
ther ")-D geometry which yields systems which may be converted into

circu;a_tmatrices is the circular strip such as the one showu in fifi/ure B-3.

The EFI_0_ a resistive ci:itllar;trip i; gii_n by o-o'/(/['_ ,

where a is the radius"_ the arc and a is the subtended ingle..Not e that if

tlw arc is closed, the a'_ x :360°. A discrete fo,'m of (B-)/3) may be obtained
.... .X - _' e have

by using pulse basis and t_rm zoning ( O - X).

(B-24)

which is similar to (B-8). The entries o Green's function matrix are

given by

4 J,_ae_ J.'a_ "9 drb'deb

(B-25)

xactly the sameIndeed, (B-24) may be solved in

FFTs. The only difference bet_ the flat strip and

possible additional symmetry in the Green's func

the arc is closed (c_ = 360°), find that

N

g[N- n = gbl - = 1,2,3.... 1

ner as (B-8) using

circular arc is a

)n sequence. If

which indicates that

than N. Therefore

(B-26)

1 entries of the sequence need be compu rather

solution of (B-24) for _ = 360 ° requires ;hly
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Figure B-4: 3-D geometries: (a) flat impedance insert in a groundplane (or

impedance plate in free-space) (b) impedance insert in a circular cylinder

(2a = _).
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where _,'o is tile free-space dyadic Green's function and 7 = .i'J' +/),0 + _ is the

i,h'm factor, l:or a cylinder, tile appropriate Green's funcliotl is available as

an eigenvallw series [8] for small radius cylinders or as a creeping wave series

[!)] for large radius cylinders. Irrespective of the form of U,. upon making

use of B "),_ (B-27), have( -., )into we

-Zoh × /TJ (u,v) = +
71

- - • × u t, du dvjkofi x -02(u u . t, v) h' • ' '

(B-a0)

\Ve note that for planar geometries, an al)propriate right-handed system is

(b. b.h) whereas for cylindrical p,'oblems, the right-handed system is given

by (fi.fi.b). l.;pon expanding the fields (E'.I'P °) and the dyadic Green's

function (G2) in terms of tangential compolwnts (fi,/',), (B-30) yields the

following coupled set of integral equations

fi • Z,ll_°(u,v) -

b : -ZoH_°(u,v) -

E,,(',,, '-')
+

7/

jko E_(u,t )(7_; (u-u,v-v )-

' v')G"v( ' ')]d 'd 'Ev(lt , It -- It , t'_ -- t'_ tt V

Eu(u, t')
+

q

jko ,(u , v _'_(u - u , v - v ) -

' v' ', ' )] du' dr{ B-31 )Et,,(r|l , )GVV(Ii - II "U- 'U

To convert (B-31) into a discrete set of equations, we expand the unknown

electric field components in terlns of subdomain basis functions

No-3 N,,- 2

w'.(, )E.(u,v) = E E E.[t,s] "u v
t=O s=O

Nv-2 N,,-3

E l.,v) = E E "'"u
t=O s=O

(B-32)
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wh('re .V_,d(motestile number of nodesizl tile h-direction ail(l :V,. is the

lillmber of llo(tes ill tile b-direction. As showll in figure 13-5. / denotes the

row number of the edge discretization and _, is tlle column nllllll)er. For this

example, tl,_' unknowns are associated with t lw free-edges and t lie associated

basis funcliolts may t)e rel)rcsented as

II't,(u ,u, t')

1I"'(,,. ,.)

( U -- Ub )
if local edge = 1

(,,, - _,b)
(,,, - v)

- if local edge = 2
(_', - "b)
0 e l.,(

(,, - ,,)
- if local edge = 3

(,,,.- u;)
(,, - _'l)

- if local edge =-1
(,,, - <)
0 el.,,e (B-33)

where the local edge numl)ering is illustrated in figure B-6. Note that a free

edge is one that is not tangential to any metallic walls and that use of (B-33)
requires a finite element tYl)e asseml)ly. For the discretization shown in figure

B-6. there are (.Y. - 1)(N_,- 1) elements and a total of 2A"_ N_, -3(N_, + N_)

unknowns. Of these, (:\_ - 1)(N_- 2) unknowns are associated with the

il-(lirected field while (N_ - 2)(N_, - l) unknowns represent the ,)-directed
field.

Substituting the field expansions (B-32) into the coupled integral equa-

tions (B-31) and employing the Galerkin's testing procedure, we have

Fo[t,.,] =

_,[t..__]=
N,,-3 Nu-2

t_=O s_=0

N,,-3 Nu-2

y_ E_[t', s'lg,,,[t - l', s - s'] +
t'=O sl=O

N,,-2 Nu-3

F_ Z; E_V,.¢lgo_,[t- t',., - Jl t = 0, 1,2..... .,v_- 3
t___.O 3e=O

s=0,1,2 .... ,Nu-2

E,,[t',._']g_,,,[t-t',._- _'1+
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N - 3
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r
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u

(a)

N v - 2

s = 0 1 2 3

'V

Nu - 3

U

(b)

Figure B-5: Rectangular patch discretization: (a) u-directed edges (b) v-

directed edges.
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N,-2 N,,-3
t t s

_ E_[t'._,],j,,[t-t,_, -, ] t = 0.1._,...... v,- 2
t'=0 s'=O

s=O,l.'2 ...... Y.-3

(B-34)

, ,]gv_,[t - t , _ - 's

I

t

,a_._[t-t',,-* ]

- '/[_] ....

_fs ' " "_, , v')du'dv'dudv-ja.o ii°(, ._.')_I ,.(,,.,.)G (, -,,' v-
p t

e

- ;_V] . o=.,

£I," ....+jko ll_,(u ,t,')IV_,(u, v)G""(u - _'• t'- t, )du dv dudv
t

= jko l,I,'_,(tt, t, )ll.'_(u, v)G""(u -u, _,- v )du dv dudv
e t

= jko l'|',,(u v')lV,,(u, ,"-'_'u t, - v')du'dv'dudv, t ]Lr I, -- tl .

e t
e

F,,[t.s] = Zo fs W.(,,,v)H_°(u,v)d,M,'

F_.[t,.s] = -Zo fs W_.(u,,,)Hg°(,,, ,,)dudv (B-35)

and e refers to the test element while e' denotes the source element. We

note that each of the double sums in (B-3,t) is a truncated,discrete,linear

convolution and hence amenable to the BiCG-FFT method.

To proceed, we define the 2-D DFT pair (analogous to (B-17))

Ml-I M_-I

= f[._,•F2D {][t,81} Z Z "ll. q]c -a_(sp+tq)

t=O s=O

,._t,;_h_ Z: F[q,
t=O s=O

Using (B-36), the convolutions in (B-34) can then be rewritten as

MI-I M_-I

__. _ E[t',s'19[t- t',.s - s'] = .T'_-t_{f'2D {E[t,sl} • .)_'2D {g[l_,81}}

tJ--O s_=.O
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(B-37)

Tile order of tl_e t'elevant I)ETs must I)e .111 >_ 2(number o1 vows) - 1 and

.1/_ _> 2(mllllber of colt, runs) - 1 where tilt' number of rows and columns

of the discl'elization may yaw" with each collvolution (see figure BS). For

example, the first convolulion in (B-34) is associated witll b-testing and

gl-source edges and hence the number of rows and columns is (.V_, - :2) and

(.V,, - 1), respectively. The field sequences ave loaded into a -111 × M_ array' in

,'ow/column orde,- of the field discretization alld the remainillg entries form

a zero pad. The Green's function sequence must be loaded into a similar

array (in the same manner) and periodic replication must be l)e.'foI'med to

pvox'ide the necessary "'negative lags". If tile sequence has lhe property,
vii - g',._ -.,'] = g[/' - t,.,' -.s], then this replication process lakes the form

rj[t..q = 911,.',] 0 <l < M---2-_-1 0<.,, < ell_.___2_l
•2 - - 2

= ,q[M_ +')-t,,s] ,llj < t <,i11- 1 0 <.,, < M2
- .7- _ _ .--g-1

= q[t. M.a + "2- ._] 0 < t < .ll____[1_ 1 --:112< s < ]11_ - 1
"2 2

= 9[.1I_ +'2-t,:112+2-_] __M_< t < :'tl_ - 1 __M_< s < M_- 1
"2 "2 - -

(B-38)

For the presented example, 9,,,,it, s] and g,,,,[t.s] possess this property while

the cross-terms, g,,,,[t,s] and g_[t,s], do not. If anti-symmetry is present

then a more complex ,'eplicatiou scheme si,nila," to (B-20) may be used.

Otherwise. all possible lags must be computed requiring longer matrix build

time since more than the first fi-directed and b-directed edges need be used
as sources.

Once the periodic arrays are loaded, the required matrix-vector product

for the tiff-interactions Inav be performed in O((MllogM1)(M21ogM2)) op-

erations rather than the O(((N_ -2)(N_ -3)) 2) operations required for a

standard matrix-vector product. The comparison is shown in figure B-7 with

:lit = 2(N_.-3), M2 = 2(N_-2) and N_ = N_ = N. Clearly, when the

number of nodes pet" side exceeds 10-15, the FFT-based matrix-vector prod-

uct is more efficient than a conventional mat,'ix-vector product. In practice,

the FFT-based product is more efficient than a standard product in terms
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Figure B-7: Comparison of operation count for a full matrix-vector product

verses a FFT-based matrix-vector product. N is the number of nodes in each

direction of" the grid, .AI1 = 2(N-3) and 2_I_ = 2(N-2).
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of wallclock time for .V < 10 since in order to exploit the ,llcmorv savings

afforded by uniform zoning of a convolutional kernel without II.',ing FFTs. ad-

dilional overhead is incurred to match the apl)rOl)riate matrix _'nlrv with the

correct vector elltries. Silnilar results are obtailled for the ot[lcr convolutions

in (B-34).

C Replication Rule (Fortran)

This appendix contains the Fortran source code which perfornls the periodic

replication of the four COml_onents of tile I)oundary integral sub-matrix. It

is included to illustrate the special care required for the cross-terms (0- z

and z - o) as Opl)oscd to tile apl)lication of (It-3S) for the like-terms (o- O
and z - z).

c Augment the arrays

("

c Provide negalive lags for like-terms
c

Do row = l.rowFFT

Do column = 1,colFFT

If( (row.LE.rowFFT/2).AND.(column.LE.colFFT/2) ) Then

c First quadrant, do nothing ...

Elself((row.gT.rowFFT/2).A ND.(column.LE.colFFT/2)) Then

c Second quadrant

gUU2D(row,column = gUU2D(rowFFT+2-row,column)

gVV2D(row,column = gVV2D(rowFFT+2-row,column)

EIseIf( (row.LE.rowFFT/2).AND.(column.GT.colFFT/2) ) Then

c Third quadrant

gUU2D(row,column) = g[;U2D(row.colFFT+2-column)

gVV2D(row,cohtlnn) = gVV2D(,ow.colFFT+2-colunm)
Else

c Fourth quadrant

gUU2D(row,column ) =

gUU2D(rowFFT+2-row,colFFT+2-column)

gV\'2 D(row,column) =
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gVV2D(rowFI:T +2-row.colFFT+2-column)
EndIf

EndDo
EndDo
(-

c Special tveattnent for cross-terms

('

If(.NOT. wraparound)Then
Do row = 1,rowFFT/2

Do collunn = I.colFFT/2

c

c Replicale for I'V

c

c Fourth quadrant ft'om first quadrant

gI'V2d(rowFFT+ l-row.colFFT+ 1-column) =

gI;V2d(row.column)

c Second quadrant from first quadrant

gl:k"2d(rowFFT+l-row.column) = -guv2d(row,column)

c

c Replicate for VU

C

c Fourth qua(Irant flom first quadrant

gVU2d(rowFFT+ 1-row,colFFT+ 1-column) =

gVU2d(row,col umn )

c Third quadrant from ill'St quadrant

g\' U2d( ,-ow,col F FT+ 1-column ) = -gV U 2d( row,col u mn)

End Do

EndDo

c
Do row = 1,rowFFT/2

Do column = 1,colFFT/2

C

c Now mirror into first and third quadrants for UV

c

c First quadrant fi'om second quadrant

gUV2d(row,column) = (0.0D0,0.0D0)

gUV2d(row,colulnn) = _gUV2d(rowFFT-l-row,column)
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c Third quadrant fi'om fourth quadrant

gl "\'2d( row,coIFFT + l-column ) =

-gI'\:2d(rowFFT-l-row,co[FFT+ I -cohunn)

(,

c Now mirror into first and second quadrants for VII

(-

c First quadrant from third quadrant

g\:U2d(row,column) = (0.0D0,0.0D0)

gVU2d(row,column) = -gVU2d(row.colFFT-l-column)

c Second qltadrant from follrth q,.ladrant

gVl'2(l(rowFFT+ 1-row.column) =

-g\_IT2d( row VET+ l-row,colFFT- l-column )

Endl)o

EndDo

Else

c WRAPAROIrND CAVITY

Do row = 1,rowFFT/2

Do column = 1,colFFT/2

c

c Replicate for [:\'

c

c Fourth quadrant from first quadrant

gU\:2d(rowFFT+ 1-1"ow,colFFT+ l-colunm) =

gUV2d(row,column)

c Second quadrant from first quadrant

gUV2d(rowFFT+l-row,column) =

gUV2d(row,guvColMax+ 1-column)

c

c Replicate for VU

c

c Fourth quadrant from first quadrant

gVU2d(rowFFT+ l-row,colF'FT+ 1-column) =

gVU2d(row,column)

c Third quadrant from first quadrant

gVU2d(row,colFFT+ 1-column) = -gVU2d(row,column)
End Do

EndDo
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("

Do row = 1,rowFFT/2

Do column = 1,colFFT/2

c

c Now mirror into first and third quadrants for UV

c

c First quadrant fi'om second quadrant

gl'V2d(row,column) = (0.0D0,0.0D0)

gUk:2d(row,column) = -gUV2d(rowFFT-l-row,column)

c ThiM quadrant from fourth qnadrant

gl'V2d(row,colFFT+ 1-column) =

-g[ W2d(rowFFT- 1-row.col F FT + 1-column

C

c

c Now mirror into first and second quadrants for VU

c

c First quadrant from third quadrant

gVU2d(row,colulnn) = (0.0D0,0.0D0)

gk:U2d(row,column) =

gVU2d(row,colFFT-gvuC, olMax + column)

c Second quadrant from fourth quadrant

gVU2d(rowFFT+ 1-row,column) =

gVU2d (rowFFT+ 1-row,colFFT-gvuCol Max + column )

EndDo

EndDo

EndIf
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